A Novel Synthesis of Pyrido[2,3-b][1,5]benzodiazepines

Yoshihisa Okamoto*, Yoshimi Zama and Kaname Takagi

Division of Chemistry, College of Liberal Arts and Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-shi, Kanagawa-ken 228, Japan

Yoshihisa Kurasawa

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Tomoji Aotsuka

Pharmaceutical Research Laboratories, Sapporo Breweries Ltd., 10, Okatohme, Yaizu, Sizuoka 425, Japan Received May 26, 1993

A novel and convenient synthesis of the title compounds 4, 5, 11, and 13 is described, involving the ring transformation of 1,5-benzodiazepine derivatives 1a and 1b with active methylene compounds.

J. Heterocyclic Chem., 31, 49 (1994).

Many pyrido[2,3-b][1,5]benzodiazepines have been synthesized to evaluate their biological activities [1], and one of them, propizepine, appears to be active clinically [2]. So far the general method for synthesizing pyrido[2,3-b][1,5]benzodiazepines is basically dependent on a condensation reaction of 2-aminoaniline with 2-halonicotinic acid [3] (Chart 1). However, the synthetic method has the disad-

Chart 1

Propizepine

vantage that a series of 2-halonicotinic acid derivatives as starting materials are not available readily. Recently, we have studied the ring transformations of 4-amino-1*H*-1,5-benzodiazepine-3-carbonitrile **1a** [4], which was readily synthesized by the reaction of 2-aminoaniline with ethoxymethylenemalononitrile [5], with some active methylene compounds under basic conditions, and 3-substituted-2-amino-6-(2-aminoanilino)-5-cyanopyridines **2a-d** [6] were obtained (Chart 2). In the present work, we synthesized 3-substituted-2-amino-6-(2-aminoanilino)-5-ethoxycarbonyl-pyridines **3a-d** from ethyl 4-amino-1*H*-1,5-benzodiazepine-3-carboxylate **1b**, and tried to produce pyrido[2,3-b][1,5]-benzodiazepine derivatives from **2a-d** and **3a-d** by intramolecular cyclizations.

When 1b was treated with active methylene compounds in the presence of 1,8-diazabicyclo[5,4,0]-7-undecene

Chart 2

(DBU), the pyridine derivatives **3a-d** were obtained (Chart Chart 3

3). Compounds **2a-d** and **3a-d** were intramolecularly cyclized to 3-substituted-2,5-diamino-11*H*-pyrido[2,3-*b*][1,5]benzodiazepine **4a-d** and 3-substituted-2-aminopyrido[2,3-*b*][1,5]benzodiazepin-5(6*H*,11*H*)-ones **5a-d**, respectively, under reflux in acetic acid, while no cyclization occurred under reflux in alcohol or dimethylformamide in the presence of DBU (Chart 4), but the starting pyridine deriva-

Table Compounds 3,4,5,11 and 13 [a]

Compound No.	Yield (%)	Mp (°C)	Molecular Formula	MS (M+)	¹ H-NMR δ (ppm)
3b	61	236-237	$C_{15}H_{17}N_5O_3$	315	1.34 (t, 3H, CH ₃), 4.28 (q, 2H, CH ₂), 4.73 (s, 2H, 2'-NH ₂), 6.61-7.63 (m, 4H arom), 7.06 (b, 2H, 2-NH ₂), 7.89 (b, 2H, CONH ₂), 8.48 (s, 1H, 4-H), 9.82 (s, 1H, NH)
3 e	50	258	$\mathrm{C_{21}H_{20}N_6O_2}$	388	1.40 (t, 3H, CH ₃), 4.36 (q, 2H, CH ₂), 4.77 (s, 2H, 2 NH ₂), 6.66-7.71 (m, 4H arom + 2H, 2-NH ₂), 7.18, 7.57 (m, 4H arom), 8.79 (s, 1H, 4-H), 9.87 (s, 1H, NH), 12.77 (s, 1H, NH)
3d	37	164	C ₁₉ H ₁₉ N ₅ O ₂	349	1.36 (t, 3H, CH ₃), 4.31 (q, 2H, CH ₂), 4.73 (s, 2H, 2'-NH ₂), 6.63-7.73 (m, 4H arom + 2H, 2-NH ₂), 6.88 (dt, 1H, py-5-H), 7.25 (dt, 1H, py-4-H); 7.81 (dd, 1H, py-3-H), 8.49 (s, 1H, 4-H), 8.56 (dd, 1H, py-6-H)
4 a	61	198-200	С ₁₃ Н ₁₀ N ₆ • СН ₃ СООН	250	1.87 (s, 3H, CH ₃), 6.78-6.93 (m, 4H arom), 7.15 (b, 2H, 2-NH ₂ and b, 2H, 5-NH ₂), 7.82 (s, 1H, 4-H), 8.21 (s, 1H, NH)
4b	78	207-208	C ₁₃ H ₁₂ N ₆ O• CH ₃ COOH	268	1.84 (s, 3H, CH ₃), 6.91-7.02 (m, 4H arom), 6.92, 7.26 (b, 2H, 2-NH ₂), 7.76 (b, 2H, 5-NH ₂), 8.06 (s, 1H, 4-H), 8.23 (b, 1H, NH), 8.80 (b, 2H, CONH ₂)
4 c	70	209-212	C ₁₉ H ₁₅ N ₇ • CH ₃ COOH	341	1.88 (s, 3H, CH ₃), 6.99 (b, 2H, 2-NH ₂), 6.64-7.67 (m, 8H arom), 7.55 (b, 1H, NH), 8.20 (b, 1H, NH), 8.32 (s, 1H, 4-H)
4d	40	223-224	С ₁₇ Н ₁₄ N ₆ • СН ₃ СООН	302	1.87 (s, 3H, CH ₃), 6.00-9.00 (b, 1H, NH + b, 2H, 2-NH ₂ + b, 2H, 5-NH ₂), 7.30, 7.47 (dd, 2H, 8-H, 9-H), 7.81, 9.10 (d, 2H, 7-H, 10-H), 7.21 (dd, 1H, py-5-H), 7.86 (dd, 1H, py-4-H), 8.48 (d, 1H, py-3-H), 8.62 (d, 1H, py-6-H)
5a	45	>300	$C_{13}H_9N_5O$	251	6.88-6.98, 7.07-7.13 (m, 4H arom), 7.18 (b, 2H, 2-NH ₂), 8.11 (s, 1H, 4-H), 8.93 (s, 1H, 11-NH), 9.68 (s, 1H, 6-NH)
5b	75	>300	$C_{13}H_{11}N_5O_2$	269	6.83-7.00, 7.02-7.12 (m, 4H arom), 6.92, 7.08 (b, 2H, 2-NH ₂), 7.40-8.20 (bd, 2H, CONH ₂), 8.39 (s, 1H, 4-H), 8.57 (s, 1H, 11-NH), 9.56 (s, 1H, 6-NH)
5c	69	>300	$C_{19}H_{14}N_{6}O$	342	6.89-7.01, 7.09-7,24, 7.44-7.49, 7.60-7.65 (m, 8H arom), 8.56 (s, 1H, 11-NH), 8.69 (s, 1H, 4-H), 9.63 (s, 1H, 6-NH), 12.92 (s, 1H, imidazole-NH)
5d	89	240-245	$C_{17}H_{13}N_5O$	303	6.88-7.31 (m, 4H arom), 7.25 (dd, 1H, py-5-H), 7.78 (d, 1H, py-3-H), 7.83 (dd, 1H, py-4-H), 8.39 (s, 1H, 4-H), 8.43 (s, 1H, 11NH), 8.56 (d, 1H, py-6-H), 9.56 (s, 1H, 6-NH)
11	95	206-209	$C_{16}H_{16}N_4O_2$	296	1.29 (t, 3H, CH ₃), 2.60 (s, 3H, CH ₃), 4.25 (q, 2H, CH ₂), 6.61 (b, 2H, NH ₂), 6.72-6.92 (m, 4H arom), 8.09 (s, 1H, 4-H), 8.38 (s, 1H, NH)
13	13	237-240	$C_{16}H_{15}N_3O_3$	297	1.31 (t, 3H, CH ₃), 2.62 (s, 3H, CH ₃), 4.25 (q, 2H, CH ₂), 6.92-7.18 (m, 4H arom), 8.52 (s, 1H, 4-H), 9.39 (s, 1H, 11-NH), 9.95 (s, 1H, 6-NH)

[a] The ir spectra (potassium bromide) showed the characteristic absorpion bands at 2200-2220 cm⁻¹ (C≡N) for 3a-d and 13.

Chart 4

Chart 5

Chart 6

1a
$$\frac{\text{CH}_3 - \overset{\circ}{\text{C}} - \text{CH}_2\text{COOE}_1 / \text{NE}_{13}, 28\%}{\overset{\circ}{\text{EtOH}} \triangle} \qquad \qquad \begin{array}{c} \overset{\circ}{\text{N}} & \overset{\circ}{\text{N}} & \overset{\circ}{\text{N}} & \overset{\circ}{\text{COOE}_1} \\ \underset{\downarrow_2}{\text{N}} & \overset{\circ}{\text{N}} & \overset{\circ}{\text{N}}$$

tives 2a-d and 3a-d were recovered. The structures of 4a-d and 5a-d were determined by spectroscopic analyses, especially for compounds 4b-d, the disappearance of the infrared absorption band due to the cyano group of 2b-d, and for compounds 5a-d the observation of M⁺ ion peak which is decreased by 46 mass units due to loss of ethanol from 3a-d. Previously, we reported the intramolecular cyclization of 1-substituted-4-(2-aminoanilino)pyrimidin-2(1H)-one-5-carbonitrile 6 [7] where one cyclization proceeded under basic conditions to give 3-substituted-5-aminopyrimido [4,5-b][1,5] benzodiazepin-2(3H,11H)-ones 7 (route a in Chart 5), while under acidic conditions, the other cyclization proceeded to afford 2-substituted-pyrimido[1,6-a]benzimidazol-1(2H)-one-4-carbonitriles 9 (route b in Chart 5), probably via intermediates 8. In the light of Baldwin's rule [8], it is worth noting that the intramolecular cyclization between amino and cyano groups in 2a-d and 6 proceeds under different conditions, respectively.

A β -ketoester was also used as an active methylene compound. For example, the reaction of 1a with ethyl acetoacetate under basic conditions gave 2-(2-aminoanilino)-3-cyano-5-ethoxycarbonyl-6-methylpyridine 10 [6] which

was intramolecularly cyclized to 5-amino-3-ethoxycarbon-yl-2-methyl-11*H*-pyrido[2,3-*b*][1,5]benzodiazepine 11 under acidic conditions. On the other hand, under basic conditions the reaction of 1b with ethyl acetoacetate directly provided 3-ethoxycarbonyl-2-methylpyrido[2,3-*b*]-[1,5]benzodiazepin-5(6*H*,11*H*)-one 13 (Chart 6).

In conclusion, when compared with the method already known, our method for synthesizing pyrido[2,3-b][1,5]benzodiazepines is more useful from the following point of view: for one thing it is able to react with a variety of active methylene compounds including β -ketoesters which are more available than 2-halonicotinic acid derivatives, and for another thing it is able to derivatize the pyridine nucleus of the products 4, 5, 11 and 13 using their functional groups.

EXPERIMENTAL

All melting points were determined on a Yazawa micro melting point BY-2 apparatus and are uncorrected. The ir spectra (potassium bromide) were recorded with a JASCO IRA-1 spectrophotometer. The nmr spectra were measured with a VXR-300 spectrometer at 300 MHz. The mass (ms) spectra were determined

with a JEOL 01S spectrometer. Elemental analyses were performed on a Perkin-Elmer 240B instrument.

3-Substituted-2-amino-6-(2-aminoanilino)-5-ethoxycarbonylpyridines 3b-d.

General Procedure.

A mixture of **1b** (0.5 g, 1.87 mmoles) and 2-cyanoacetamide (0.17 g, 2.07 mmoles) in 50 ml of ethanol was refluxed for 5 hours in the presence of **DBU** (0.75 g, 4.9 mmoles). Precipitates of **3b** were collected by suction filtration, washed with ethanol and dried in a vacuum desiccator. The crude product is practically pure without further purification.

Anal. Calcd. for $C_{15}H_{17}N_5O_3$ **3b**: C, 57.44; H, 5.43; N, 22.21. Found: C, 57.10; H, 5.51; N, 21.99.

Anal. Calcd. for $C_{21}H_{20}N_6O_2$:4/5 H_2O 3c: C, 62.61; H, 5.40; N, 20.86. Found: C, 62.86; H, 5.24; N, 20.54.

Anal. Calcd. for $C_{19}H_{19}N_5O_2$ **3d**: C, 65.32; H, 5.48; N, 20.04. Found: C, 64.99; H, 5.44; N, 19.89.

3-Substituted-2,5-diamino-11H-pyrido[2,3-b][1,5]benzodiazepines 4a-d.

General Procedure.

A suspension of 2a (1 g, 4 mmoles) in 50 ml of acetic acid was refluxed for 4 hours. The solution was cooled (or allowed to stand) to precipitate bright yellow crystals of 4a which were collected by suction filtration, washed with chloroform and dried in a vacuum desiccator. The crude product was practically pure without further purification.

Anal. Calcd. for C₁₃H₁₀N₆·CH₃COOH·1/5H₂O **4a**: C, 57.39; H, 4.62; N, 26.77. Found: C, 57.06; H, 4.41; N, 26.76.

Anal. Calcd. for C₁₃H₁₂N₆O·CH₃COOH·6/5H₂O **4b**: C, 51.51; H, 5.30; N, 24.03. Found: C, 51.44; H, 5.09; N, 23.85.

Anal. Calcd. for C₁₉H₁₈N₇·CH₃COOH 4c: C, 62.83; H, 4.77; N, 24.42. Found: C, 63.17; H, 4.64; N, 24.73.

Anal. Calcd. for C₁₇H₁₄N₆·CH₃COOH·1/5H₂O **4d**: C, 62.35; H, 5.07; N, 22.96. Found: C, 62.54; H, 4.91; N, 23.04.

3-Substituted-2-aminopyrido[2,3-b][1,5]benzodiazepin-5(6H,11H)-ones **5a-d**.

General Procedure.

A solution of **3a** (2.5 g, 8.42 mmoles) in 100 ml of acetic acid was refluxed for 3 hours. The solvent was evaporated under reduced pressure to provide crude **5a** which was recrystallized from chloroform and ethanol to give pure **5a**.

Anal. Calcd. for C₁₃H₉N₅O·1/7H₂O **5a**: C, 61.52; H, 3.69; N, 27.59. Found: C, 61.54; H, 3.59; N, 27.55.

Anal. Calcd. for C₁₃H₁₁N₅O₂·H₂O **5b**: C, 54.36; H, 4.53; N, 24.39. Found: C, 54.65; H, 4.25; N, 24.21.

Anal. Calcd. for C₁₉H₁₄N₆O·1/2H₂O **5c**: C, 64.96; H, 4.27; N, 23.93. Found: C, 65.05; H, 3.98; N, 23.64.

Anal. Calcd. for $C_{17}H_{13}N_5O \cdot H_2O 5d$: C, 63.54; H, 4.71; N, 21.79. Found: C, 63.21; H, 4.57; N, 21.50.

5-Amino-3-ethoxycarbonyl-2-methyl-11*H*-pyrido[2,3-*b*][1,5]benzo-diazepine 11.

A solution of 10 (0.2 g, 6.76 mmoles) in 25 ml of acetic acid was refluxed for 3 hours. The solvent was removed under reduced pressure to afford yellow crystals of 11 which were washed with ethanol. The crude crystals were practically pure without further purification.

Anal. Calcd. for $C_{16}H_{16}N_4O_2$: C, 64.85; H, 5.44; N, 18.91. Found: C, 64.70; H, 5.41; N, 18.63.

3-Ethoxycarbonyl-2-methylpyrido[2,3-b][1,5]benzodiazepin-5-(6H,11H)-one 13.

A mixture of 1b (0.5 g, 1.87 mmoles) and ethyl acetoacetate (0.28 g, 2.15 mmoles) in 50 ml of ethanol was refluxed for 3 hours in the presence of DBU (0.75 g, 4.9 mmoles). The solvent was removed under reduced pressure to afford a dark brown oil, which was allowed to stand for a week to provide yellow crystals of 13. The crude crystals were washed with ethanol to give practically pure 13.

Anal. Calcd. for $C_{16}H_{15}N_3O_3$: C, 64.64; H, 5.09; N, 14.13. Found: C, 64.38; H, 5.20; N, 14.12.

REFERENCES AND NOTES

- [1] J. W. H. Watthey and J. Stanton, The Chemistry of Heterocyclic Compounds, Vol. 43, Part 2, Azepines, A. Rosowsky, ed, John Wiley & Sons, Inc., New York, 1984, p 415 and 673.
- [2] J. M. Lwoff, C. Larousse, P. Simon and J. Boissier, Therapie, 26, 451 (1971).
 - [3] C. Hoffmann and A. Faure, Bull. Soc. Chim. France, 2316 (1966).
 - [4] Y. Okamoto and K. Takagi, J. Heterocyclic Chem., 24, 885 (1987).
- [5] Y. Okamoto and T. Ueda, J. Chem. Soc., Chem. Commun., 357 (1973).
- [6] Y. Okamoto, Y. Zama, T. Itoh, T. Aotsuka, Y. Kurasawa and K. Takagi, J. Chem. Res. (S), 136 (1990); Idem, ibid. (M), 0966 (1990).
- [7] T. Aotsuka, H. Morita, K. Takagi and Y. Okamoto, Synthesis, 668 (1986).
- [8] J. E. Baldwin, J. Chem. Soc., Chem. Commun., 734 and 738 (1976).